
Network simulator manual

James Hanlon

January 2011

This document describes a software network simulator. The simulator is cycle-based and models Wit-
level communication. It is intended to simulate arbitrary network topologies and routing algorithms
based on virtual channel (VC) wormhole Wow-control. It is based on the BookSim1 software simulator
accompanying [1]. It is assumed the reader is familiar with the concepts presented in the book.

1 System architecture

Cycle-based means that all network components are tied to a global clock and are synchronously
updated each time-step. The updates are generally performed in two phases. The Vrst phase reads
some input state and computes some output values as a function of these. The second phase copies
each components output value into the inputs of the connected components.

A network is composed of nodes and links. The arrangement of link connections between nodes
determines the topology. Each node contains a processor which acts as a source and sink for packets,
and a router which forwards or queues incoming Wits to an output port or towards the processor if it is
the destination. If Wit generation is less than Wit reception then source queues will grow and network
will become saturated. Otherwise, the network will be in a stable state.

1.1 Nodes

A node is comprised of a router (or switch) and a processor. The router is at the heart of the simulator.
It simulates a non-blocking crossbar with input-buUered VCs. It takes 1 cycle to transfer a Wit from
an input to an output buUer. VCs are used for Wow control and as a resource for some protocols and
the number available is a simulation parameter. Credit-based Wow control is used to provide buUer
management and back-pressure.

The processor generates messages according to the traXc pattern and injection process, and to con-
sume messages sent by other nodes. It is connected to the router by its own input and output ports
which each have only a single virtual channel.

1http://nocs.stanford.edu/cgi-bin/trac.cgi/wiki/Resources/BookSim

1

http://nocs.stanford.edu/cgi-bin/trac.cgi/wiki/Resources/BookSim

1.2 Links

Links are used both to connect routers together and the processor the router. Links are unidirectional
but are modeled to contain a second signal traveling in the opposite direction as the data to transmit
the credit messages back upstream. Links have an associated propagation delay in cycles, modeling
the physical propagation of electrical or optical signals along a cable or Vber. If the delay is d cycles
then the link can simultaneously carry d Wits and d credits in either direction at diUerent stages along
the journey.

2 Compilation and Running

The simulator is written in Java and can be built and run from source code with the included MakeVle,
by running make. The simulator can then be run by setting the classpath variables (make classpath)
and executing

java sim.Main 〈config〉.cfg

or by running the command make run which both sets-up the classpath and executes the program.

2.1 Dependencies

The simulator uses the JGraphT2 library. The library jar must be included in the class path to build
and run. The location of this can be speciVed in the MakeVle by setting the variable JGRAPHT_JAR.
GraphViz3 is used to visualise the network topology.

3 Output

The simulator Vrst reads the conVguration Vle and initialises itself by creating the network and setting
up the routing. For example:

Read configuration file default.cfg

Created network topology of 16 nodes

Initialised routing tables for DOR

Each simulation run gives live summary statistics for each sample and when the run completes a
summary of the run is given. For example:

Warmed up after 1000 cycles
Sample Generated Received Flying Latency Throughput
99 6406 6400 6 83.31 0.02
Finished sampling, draining packets...
0, 6 left

2http://jgrapht.sourceforge.net/
3http://www.graphviz.org/

2

http://jgrapht.sourceforge.net/
http://www.graphviz.org/

Done in 124 cycles
[STATS]==
Packets generated 6406
Packets received 6406
Overall latency 81.00640240688723
Overall hops 6.95
Overall accepted 0.021857
Overall min accepted 0.00
Latency std dev 13389.207279223454
Accepted std dev 9.747225191757491E-4

4 Configuration Parameters

The simulator program takes a single command line argument specifying a conVguration Vle (*.cfg)
used to specify the run time parameters of a simulation. The conVguration is plain text and each line
is of the format:

<variable> = <value>

Comments can be added with a # character at the beginning of the line. The parameters mode,
topology, routing and traffic_pattern are required, but all other parameters can be optionally
speciVed and if absent set to default values.

Randomness is used in various parts of the simulator such as topology and traXc generation, in these
cases the random number generator seed can be explicitly speciVed so that the user can control the
randomness. With a particular seed value, the output will be deterministic, which is important to be
able to control between experiments. All seed parameters (*_seed) can be set to time, so that the
system time in milliseconds is used. Figure 1 shows an example conVguration Vle for a 16 node mesh
network with Dimension-Order routing.

4.1 Simulator Modes

The simulator can be run in two diUerent modes, debug or run, set with the mode parameter.

4.1.1 Debug Mode

The debug mode launches the program with a GUI interface where each node is represented in a tab
detailing the state of the input and output virtual channels of both the router and processor. Various
status updates are written to separate consoles for the router and processor. The simulation can be
run, paused and stopped, or stepped through to inspect the state each cycle. Figure 2 shows this
interface.

The following two parameters are used to bound the run time behaviour of the simulator when in
debug mode:

3

Simulation mode =============================
mode = run

Topology parameters =========================
topology = mesh
k = 4
n = 2

Routing Parameters ==========================
routing = dor

Network parameters ==========================
buffer_size = 4
num_vcs = 4
link_delay = 1
rand_seed = time

Traffic parameters ==========================
traffic_pattern = bitrev
flits_per_packet = 20
injection_process = mmp
burst_alpha = 0.1
burst_beta = 0.9

Run mode simulation Parameters =============
sim_runs = 10
sample_period = 1000
num_samples = 100
latency_thresh = 1000
warmup_thresh = 0.05

Figure 1: Example conVguration Vle for a 16 node mesh network with Dimension-Order routing.

max_cycles Sets the maximum number of cycles the simulation can run for, when reached
execution is terminated.

max_msgs Sets the maximum number of messages that can be generated in a single simula-
tion run.

4.1.2 Run Mode

Run mode initialises the simulator to perform experiments. Run mode uses the following extra pa-
rameters to specify the execution of the experiments.

sim_runs Sets the number of complete simulation runs to be collated into the Vnal result.

sample_period Sets the size of a sample period in cycles.

4

Figure 2: Debug GUI

num_samples Sets the number of samples to be taken, hence sample_period * num_samples
is the number of executed cycles used for measurement.

latency_thresh Sets a threshold latency value in cycles. If the average latency in the simulation
exceeds this value then the simulation terminates. If this value is set to 0 this it is
disabled.

warmup_cycles Sets the number of cycles necessary for the simulator to reach a steady state. If
this value is set to 0, then this is ignored and the simulator warms up when the
percentage change in latency and throughput is less than the parameter warmup_thresh.

4.2 Topology

The topology parameter speciVes the network topology and can take the following values. The
simulator supports two regular networks, the mesh and torus, which also includes the hypercube, a
special binary torus. It also includes irregular constructions of mesh and tori by introducing a speciVc
level of link faults.

mesh A k-ary n-mesh, where k and n are speciVed by parameters k and n respectively.

5

tori A k-ary n-cube (torus), where k and n are speciVed by parameters k and n re-
spectively. A hypercube is speciVed as a 2-ary n-cube.

4.3 Routing

The routing parameter speciVes the routing algorithm to be used in the network and can take the
following values. For each algorithm, some number of virtual channels may be required to provide
freedom from deadlock.

dor Dimension order routing, can only be used with mesh or torus topologies. For
meshes, only one virtual channel is necessary for deadlock freedom. For tori, two
virtual channels are necessary.

updown Up*/down* routing, compatible with any topology. The spanning tree root node is
randomly selected, or can be selected by setting root_nodewith a node identiVer.

minimal Minimal path routing, used for debugging purposes, will deadlock.

4.4 Network

The network parameters specify ‘physical’ parameters of the network components.

buffer_size Sets the size of the buUers in Wits on input virtual channels.

num_vcs Sets the number of virtual channels to use for each input channel.

link_delay Sets the number of cycles taken for Wits and credits to be transmitted along a link.

rand_seed Sets the random number generator seed for the random elements of network ex-
ecution such as traXc generation.

4.5 Traffic

The spatial distribution of traXc over the network is governed by a traXc pattern, set using the
traffic_pattern parameter and can take the following values:

uniform Each source sends a uniform amount of traXc to each other node. Destination
nodes are selected for each packet uniformly at random.

bitcomp Bit complement. di = ¬si

bitrev Bit reverse. di = sb−i−1

transpose di = si+b/2 mod b

shuffle di = si−1 mod b

tornado di = sx + dk/2e − 1 mod k

neighbour dx = sx + 1 mod k

6

randperm Random permutation. A Vxed permutation of traXc is chosen uniformly at ran-
dom from the set of all permutations. The parameter perm_seed can be used to
control randomness.

The injection process determines the temporal distribution of traXc in the network and is set with the
injection_process parameter and can take the following values:

bernoulli Bernoulli injection process, the injection rate r parameter injection_ratemust
be set such that 0 < r ≤ 1.

onoff Modulated Markov Bernoulli process with two states ‘on’ and ‘oU’. The prob-
abilities of transitions between on and oU α and β respectively, can be set by
burst_alpha and burst_beta such that 0 < α, β ≤ 1.

Finally, the flits_per_packet parameter can be set to specify a constant number of Wits per packet.

5 Extensibility

The simulator has been designed and written in an object-orientated style as the components of a net-
work can intuitively be thought of as objects, for example Node and Link objects constitute a Network.
The simulator has been designed to be an extensible platform that is non-speciVc to topologies or rout-
ing algorithms, consequently the addition of new topologies or routing algorithms is straight forward.

5.1 Topologies

A Network is a set of interconnected Nodes. The static method Topology.createTopology() is
responsible for creating the set of Nodes. This can be done in two ways, the Vrst is to create a
Construction graph which allows you to specify the topology by adding edges between nodes to
it. On completion, the Construction has a method create() to create the set of Nodes for the net-
work. The code-snippet below shows how to randomly add edges between nodes to a Construction
and return the set of nodes.

Construction graph = new Construction(numNodes);

for(int i=0; i<numNodes; i++) {
for(int j=0; j<numNodes; j++) {

if(rand.nextDouble < 0.5)
graph.addEdge(i, j);

}
}

Node[] nodes = graph.buildTopology();

The second, slightly more indirect way, is to explicitly construct the Nodes. This way is used for
Mesh and Torus constructions as greater control over the port constructions is necessary. To do this,
each Nodemust be constructed, then the connectTo()method can be used to specify directional link
connections. After all links have been connected the finishedConnecting()must be called for each
Node. The code snippet below shows how this type of construction could be used to build a ring.

7

Node[] nodes = new Node[numNodes];

for(int i=0; i<nodes.length; i++)
nodes[i] = new Node(i, 2, 2);

for(int i=0; i<numNodes; i++) {
nodes[i].connectTo(nodes[(i+1) % numNodes], 1, 2);
nodes[i].connectTo(nodes[(i-1) % numNodes], 2, 1);
nodes[i].finishConnecting();

}

For more examples, see the mesh and torus topologies included with the simulator.

5.2 Routing Algorithms

New routing algorithms can be added to the simulator by implementing the RoutingFunction inter-
face. This speciVes two methods to return an output port and an output virtual channel based on the
current node, the input virtual channel and the destination node. Most of the algorithms implemented
in the simulator are based on tables, where lookups are performed to obtain output ports and virtual
channels. This requires a static conVguration phase, and is implemented with a static method in the
routing function class called in the Network object’s constructor, passing in the Network object as an
argument.

5.3 Experimentation

Custom experiments should be built within the RunMode class.

References

[1] William Dally and Brian Towles. Principles and Practices of Interconnection Networks. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

8

	System architecture
	Nodes
	Links

	Compilation and Running
	Dependencies

	Output
	Configuration Parameters
	Simulator Modes
	Debug Mode
	Run Mode

	Topology
	Routing
	Network
	Traffic

	Extensibility
	Topologies
	Routing Algorithms
	Experimentation

