The resurgence of parallel
programming languages

Jamie Hanlon &

Simon Mcintosh-Smith
University of Bristol
Microelectronics Research Group
hanlon@cs.bris.ac.uk

-% University of
.. BRISTOL © Simon McIntosh-Smith, Jamie Hanlon 1

mailto:simonm@cs.bris.ac.uk

The Microelectronics Research
Group at the University of Bristol

www.cs.bris.ac.uk/Research/Micro

l’é University
BRISTOL © Simon McIntosh-Smith, Jamie Hanlon

http://www.cs.bris.ac.uk/Research/Micro

The team

Simon Mclintosh-Smith Prof David May Prof Dhiraj Pradhan
Head of Group

Dr Jose Dr Kerstin Eder Dr Simon Hollis Dr Dinesh
Nunez-Yanez Pamunuwa

7 tenured staff, 6 research assistants, 16 PhD students

ﬂlVEfSlt O
Bl U £
. BRISTOL © Simon Mclntosh-Smith, Jamie Hanlon

Group expertise

Energy Aware COmputing (EACO):

A

o To Do Ix

o I

A

Multi-core and many-core computer architectures
Alnmos, XMOS, ClearSpeed, Pixel fusion,

Algorithms for heterogeneous architectures (GPUs, OpenCL)
Electronic and Optical Network on Chip (NoC)
Reconfigurable architectures (FPGA)

Design verification (formal and simulation-based), formal
specification and analysis

Silicon process variation
Fault tolerant design (hardware and software)

Design methodologies, modelling & simulation of MNT based
structures and systems

-Eé University of
BRISTOL © Simon MclIntosh-Smith, Jamie Hanlon

Overview

A Parallelism in computing

A Overview and discussion of two current
parallel languages

A Chapel (HPC)
A OpenCL (desktop/embedded)

A Moving forward

A
A

IE

Heterogeneous System Architecture
Research into scalable general purpose

parallel architectures

% University
5, | Ay BRISTOL © Simon MclIntosh-Smith, Jamie Hanlon

Di dnot paral | e
use to be a niche?

l’é University
BRISTOL © Simon Mclntosh-Smith, Jamie Hanlon 6

% University
5, | Ay BRISTOL © Simon MclIntosh-Smith, Jamie Hanlon

IE

But now parallelism Is mainstream

~JS VITA

Quad-core ARM Cortex A9 CPU
Quad-core SGX543MP4+ Imagination GPU

% University
hH | BRISTOL © Simon McIntosh-Smith, Jamie Hanlon

IE

HPC stronger than ever

ég World's No.1on TOP500 List

K compufer

A 705,024 SPARC64 processor cores delivering 10.51
petaflops (10 quadrillion calculations per second)

A No GPUs or accelerators

A 9.9 MW

% University
hH | BRISTOL © Simon MclIntosh-Smith, Jamie Hanlon

IE

Increasing use of GPUs at high en

ATianhe-1A in Tianjin, China (2" in Top500)

A2.6 petaflops

A14,336 Intel 2.93 GHz CPUs (57,334 cores)
A7,168 NVIDIA TeslaM2050 GPUs (100,000 cores)
A4 MW power consumption

-Ké University of
. BRISTOL © Simon Mclntosh-Smith, Jamie Hanlon 10

Big computing IS mainstream too

 The Dalles . }
sgm Snake A— Report: Google Uses About 900,000 Servers (Aug 15t 2011)
, : *-,
@ OREGON .« | http://www.datacenterknowledge.com/archives/2011/08/01/
0 100[report-google-uses-about-900000-servers/

-Ké University of
. BRISTOL © Simon Mclntosh-Smith, Jamie Hanlon 11

http://www.nytimes.com/2006/06/14/technology/14search.html
http://www.nytimes.com/2006/06/14/technology/14search.html
http://www.nytimes.com/2006/06/14/technology/14search.html
http://www.datacenterknowledge.com/archives/2011/08/01/report-google-uses-about-900000-servers/
http://www.datacenterknowledge.com/archives/2011/08/01/report-google-uses-about-900000-servers/
http://www.datacenterknowledge.com/archives/2011/08/01/report-google-uses-about-900000-servers/
http://www.datacenterknowledge.com/archives/2011/08/01/report-google-uses-about-900000-servers/
http://www.datacenterknowledge.com/archives/2011/08/01/report-google-uses-about-900000-servers/
http://www.datacenterknowledge.com/archives/2011/08/01/report-google-uses-about-900000-servers/
http://www.datacenterknowledge.com/archives/2011/08/01/report-google-uses-about-900000-servers/
http://www.datacenterknowledge.com/archives/2011/08/01/report-google-uses-about-900000-servers/
http://www.datacenterknowledge.com/archives/2011/08/01/report-google-uses-about-900000-servers/
http://www.datacenterknowledge.com/archives/2011/08/01/report-google-uses-about-900000-servers/
http://www.datacenterknowledge.com/archives/2011/08/01/report-google-uses-about-900000-servers/
http://www.datacenterknowledge.com/archives/2011/08/01/report-google-uses-about-900000-servers/
http://www.datacenterknowledge.com/archives/2011/08/01/report-google-uses-about-900000-servers/
http://www.datacenterknowledge.com/archives/2011/08/01/report-google-uses-about-900000-servers/

A renaissance In parallel programming

CSP
A Erlang

A Occam-pi
A XC

GPGPU

A OpenCL
A CUDA

A HMPP

A OpenACC

Message-passing
A MPI

-% University of
Y BRISTOL

Multi-threaded
A OpenMP

A Cilk

A Go

Object-orientated
A C++ AMP
A CHARM++

PGAS

A Co-array Fortran
A Chapel

A Unified Parallel C
A X10

© Simon McIntosh-Smith, Jamie Hanlon

12

Hé University of
Y BRISTOL

© Simon MclIntosh-Smith, Jamie Hanlon

13

Chapel

A Cray development funded by DARPA as
part of HPCS program

A Partitioned global address space (PGAS)
anguage

A Central abstraction is a global array
partitioned across a system

A Programmer control of locality by allowing
explicit affinity of both tasks and data to
locales

% University
BRISTOL 14

Arrays and distribution

A An array is a general concept and can be
declared with different domains

A Can be distributed with a domain map
A Standard maps and can be user-defined

A Computation can remain the same
regardless of a specific distribution

[] steve
1 1 1 1 == ‘132“_ - ="
| E I p— 1 _Sul"‘lg
b HeH ;
b oaaacsl [FE_JTE__H “david
b o p O E O - JﬂQQb_ -
b pobo TrrFFFFIJrrrmEFler " “albert
“densé strided sparsé _I"brad
unstructured associative
|4 University of

BRISTOL © Simon Mclntosh-Smith, Jamie Hanlon 15

C h a p edtadarallelism

A Zippered forall:

forall (a,b,c)in (A, B, C)do
a=Db+alpha*c

Aloop body sees ith element from each iteration

A Works over:
Adistributed arrays
Aarrays with different distributions

A user-defined iterators i A,B,C could be trees
or graphs

% University
hH | BRISTOL © Simon MclIntosh-Smith, Jamie Hanlon

IE

MPI+OpenMP

#include <
#ifdef
#include <

hpcc.h >
_OPENMP
omp.h >

#endif

static int

VectorSize ;

static double *a, *b, *c;

int

}

int

HPCC_StarStream (HPCC_Params * params) {
int myRank, commSize;
int rv, errCount ;

MPI_Commcomm = MPI_COMM_WORLD;

MPI_Comm_size (comm & commSize);
MPI_Comm_rank(comm & myRank);

rv. = HPCC_Stream(params,0== myRank);
MPI_Reduce (& rv, & errCount , 1, MPL_INT, MPI_SUM,
0, comm);

return errCount ;

HPCC_Stream(HPCC_Params * params, int
register int j;
double scalar;

dolO) {

VectorSize = HPCC_LocalVectorSize
sizeof (double), 0);

(params, 3,

a = HPCC_XMALLOC(double,
b = HPCC_XMALLOC(double,
¢ = HPCC_XMALLOC(double,

VectorSize);
VectorSize);
VectorSize);

if la]]'b]|!c){
if (c) HPCC_free (c);
if (b) HPCC _free (b);
if () HPCC_free (a);
if (dolO){
fprintf (outFile
(%d). \ n",
fclose (outFile);
}

return 1;

}

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<
b[j 1=2.0;
c[j 1=0.0;
}

VectorSize

scalar =3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif

for (j=0;j< VectorSize

a[j] = b[j]+scalar*cl[j];

HPCC free (c);

HPCC free (b);

HPCC free (a);

return 0;

VectorSize

Vi) o

y i)

, "Failed to allocate memory

);

Composition in Chapel

A Data parallelism

cobegin {

forall (a,b,c)in (A, B, C)do
a=Db+alpha*c;

forall (d, e, f) in (D, E, F) do
d = e + beta * f;

}
A Task parallelism nested in data parallelism

forall ainA{
If a == 0 then
begin a = f(a)
else
a=g(a)

}
% University
hH | BRISTOL © Simon MclIntosh-Smith, Jamie Hanlon

IE

Issues with Chapel

A HPC-orientated: not suitable for general
programming, e.g. embedded platforms

A Locales support only a single level
nierarchy

A No load balancing/dynamic resource
management

A Too high level? Is it a good abstraction of
a parallel machine?

% University
BRISTOL © Simon MclIntosh-Smith, Jamie Hanlon 19

l’é University
BRISTOL

OpenCL

(Open Computing Language)

© Simon MclIntosh-Smith, Jamie Hanlon

20

OpenCL

A Open standard for portable, parallel programming of
heterogeneous systems

A Lets programmers write a single portable program that uses
all resources in the heterogeneous platform

HEER HEE
NEEN mEmR
RGN

A modern system includes:
I One or more CPUs
I One or more GPUs
I DSP processors e
iéot her devi cegl

GMCH = graphics memory control hub

ICH = Input/output control hub
Hé University PUEOHR

H ,3’5 BRISTOL © Simon Mclntosh-Smith, Jamie Hanlon 21

IE

OpenCL platform model

Processing

Element \

Host

Compute Unit Compute Device

A One Host + one or more Compute Devices
A Each Compute Device is composed of one or more Compute Units

A Each Compute Unit s further divided into one or more Processing
Elements

© Simon McIntosh-Smith, Jamie Hanlon

22

OpenCL memory model

A Private Memory v | m—— oivate. W Piivate

Memory Memory Memory Memory

A Per Work-ltem

A Local Memory
A Shared within a Work-Group

Work -ltem Work -ltem Work -ltem Work-ltem

A Local Memory Local Memory
Work -Group Work -Group
A Visible to all Work-Groups Global Memory & Constant Memory
A HOSt Memory Compute Device

A On the CPU

Host Memory

Memory management is explicit
You must move data from host A global A local and back

-% University of
.. BRISTOL © Simon MclIntosh-Smith, Jamie Hanlon

The BIG Idea behind OpenCL

AReplace loops with functions (a kernel) executing at each point
In a problem domain (index space).

AE.g., process a 1024 x 1024 image with one kernel invocation
per pixel or 1024 x 1024 = 1,048,576 kernel executions

Traditional loops

Data parallel OpenCL

void kernel void
trad_mul(const Int n, dp_mul (global const float *a,
const float *a, global const float *b,
const float *b, global float *c) {
float *c) { * int id= get global id (0);
Int 1 ;
for(1=0; i<n; i++) c[id] = a[id] * bl[id];
c[i]=a] i]*b[1],
} } /] execute ovVer-itehs 0
Hé University
BRISTOL © Simon MciIntosh-Smith, Jamie Hanlon 24

Host program bollerplate

/I create the OpenCL context on a GPU device

cl_context =

CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

clCreateContextFromType O,

/I build the program
err = clBuildProgram(program, 0, NULL, NULL, NULL,
NULL);

/I get the list of GPU devices associated with context /| create the kernel

clGetContextinfo

(context, CL_CONTEXT_DEVICES, 0,

NULL, & cb);

devices= malloc (cb); /l set the args values
cIGeég\c/)Ir&esxtwLoLL) (context, CL_CONTEXT_DEVICES, cb, err = clSetKernelArg(kernel, 0, (void *) &memobjS[O],
sizeof(cl_mem));
J/ create a command - queue err |= clSetKernelArg(kernel, 1, (void *)&mempbjs[l],
cmd queue = clCreateCommandQueue (context , devices [0], . smepf(cl_mem));
0, NULL); err |= clSetKernelArg(kernel, 2, (void *)&memobjs[2],
sizeof(cl_mem));
/I allocate the buffer memory objects // set work - item dimensions
memobjs[0] = clCreateBuffer (context, CL_MEM_READ_ONLY | lobal k si =n
CL M)E}M COPY HOST PTRsizeof (ci float), SfcA , global_work_size[0] = n;
NULL
memobjs".\le] clCreateBuffer ~ (context,CL_MEM_READ_ONLY | /I execute kernel
M_COPY_HOST_PTRsizeof (cl _float)*n, srcB, err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1,
NULL); NULL, global_work_size, NULL, 0, NULL, NULL)
memobjs[2] = clCreateBuffer (context,CL_MEM_WRITE_ONLY ,
sizeof (cl_float)*n, NULL, /I read output array
NULL); err = clEnqueueReadBuffer(context, memobjs[2], CL_TRUE,
0, n*sizeof(cl_float), dst, O, NULL, NULL&
I create the program
program = clCreateProgramWithSource (context, 1,
&program_source , NULL, NULL);

33

Hé University of

BRISTOL

© Simon McIntosh-Smith, Jamie Hanlon

kernel = cl CreateKernel (progr am,

25

Host program bollerplate

/I create the OpenCL context on a GPU device

cl_context = clCreateContextFromType (O,
CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

/I get the list of GPU devices associated with context

clzatCantavtinfa (eantavt C1 CONTEXYT NDREVICEQ N

. Define platform and queues

cl
devices, NULL);

/I create a command - queue

cmquueue = clCreateCommandQueue (context |,
NULL

Define Memory objects

/I create

pogian Create the program I

/1 build th -
errlichBu?lcﬁ BUlId the program
NULL); é

devices [0],

/I create the kernel
kernel =

/[se**~~ ~~
err Create and setup kernel

err |= clSetKernelArg(kernel, 1, (void *)&memobjs[l],
sizeof(cl_mem));
err |= clSetKernelArg(kernel, 2, (void *)&memobjs[2],
sizeof(cl_mem));

cl CreateKernel (program,

/I set work - item dimensions
global_work_size[0] = n;

inexecue Execute the kernel I
err = clEng
NULL, global_work_size, , 0, . ;

I

¢ Read results back to the host

I’é University
BRISTOL

© Simon MclIntosh-Smith, Jamie Hanlon

26

Issues with OpenCL

A Low level

A It does not compose
A Disjoint memory address spaces (local/global)
A Barriers

A It provides no resource management
AKernels are a statically allocated resource

% University
hH | BRISTOL © Simon MclIntosh-Smith, Jamie Hanlon

IE

l’é University

BRISTOL

Heterogeneous System
Architecture (HSA)

© Simon MclIntosh-Smith, Jamie Hanlon

28

HSA overview

A Announced recently by AMD as new open
architecture specification
A HSAIL virtual ISA

A HSA memory model

A HSA dispatch

Azgﬂgned to support CPU-GPU Integration in

A Provides an optimised platform architecture
for OpenCL

A Already being adopted by other vendors
starting with ARM

% University
BRISTOL © Simon MclIntosh-Smith, Jamie Hanlon 29

HSA features

A Integration of CPU and GPU in silicon

A
A
A

Unified address space for CPU and GPU
Potentially even GPU context switching!
HSA programming model introduces

PGAS-style distributed arrays

A Memory hierarchy abstraction to address
function composition

A First class barrier objects

-Eé University of
BRISTOL © Simon MclIntosh-Smith, Jamie Hanlon

30

HSA Intermediate Layer (HSAIL)

A Virtual ISA for parallel programs

A Similaridea to LLVM IR - a good target for
compilers

A Finalised to specific ISA by a JIT compiler

A Features:

A Explicitly parallel

A Support for exceptions, virtual functions and other high-level
features

A Syscall methods (I/0, printf etc.)
A Debugging support

% University
hH | BRISTOL © Simon MclIntosh-Smith, Jamie Hanlon

IE

HSA memory model

A Compatible with C++11, Java and .NET
memory models

A Relaxed consistency

Hé University
BRISTOL © Simon MclIntosh-Smith, Jamie Hanlon

32

HSA dispatch

A HSA designed to enable heterogeneous
task queuing
A A work queue per core
A Distribution of work into queues
A Load balancing by work stealing

Hé University
BRISTOL © Simon MclIntosh-Smith, Jamie Hanlon

33

Problems in the long term

A Programming model split between two
architectures

A Cost of data movement between CPU and
GPU will be reduced but still present

A Not scalable beyond a single chip

% University
BRISTOL © Simon MclIntosh-Smith, Jamie Hanlon 34

l’é University

BRISTOL

Research into scalable
general purpose
architectures

© Simon MclIntosh-Smith, Jamie Hanlon

35

Simplify programming

L 4 7 e

Need general purpose

XL 1:‘.?‘ agp2s

parallel processors to P >

. . —&5 ‘
simplify programming (&= Eh,.. -
Must support many
algorithms, even within
a single application
e.g. Task (farms, pipeline)
and data parallelism

Performance must be S dak)
comparable to special- __\ Hﬂf{ FTTTTTy
purpose devices *mg —

-% University of
.. BRISTOL © Simon Mcintosh-Smith, Jamie Hanlon

36

Performance must be scalable

A 1 - 1000 of cores per chip
A Potentially millions of cores in a system

A Regular tiled implementation on chips, modules

and boards

I R
i e
RN UL A
aﬂ%aﬂ% . Memory

+
*

Hé University
BRISTOL © Simon McIntosh-Smith, Jamie Hanlon 37

Interconnect

A Must provide low latency, high throughput
communication

A This must scale well with the number of
Processors

A Clos & hypercube networks provide these
properties but it iIs assumed they are
prohibitively difficult to build

A Low dimensional meshes seem to be the convention
A Potential in new technology: 3D stacking, silicon

Ssubstrates, optical | Nt €
% University
BRISTOL © Simon MclIntosh-Smith, Jamie Hanlon 38

Summary

A Parallel languages are going through a renaissance

A Not just for the niche high-end any more

ANo silver bullets, | ots of
A In HPC, GPUs being adopted quickly at the high-end
A In embedded computing, OpenCL gaining ground

A Movement towards high level general purpose models
of parallelism

% University
| A BRISTOL © Simon Mclntosh-Smith, Jamie Hanlon 39

IE

www.cs.bris.ac.uk/Research/Micro

l’é University
BRISTOL © Simon McIntosh-Smith, Jamie Hanlon

40

