Scalable data abstractions for
distributed parallel computations

Jamie Hanlon

July 10, 2014

Overview

How to build distributed data structures with message passing

Motivation & background
» distributed parallel computer architecture

» opportunities and challenges with embedded computing

Proposal
» a server notation
» implementation issues

» an example program

Distributed memory parallelism

Supercomputers have been doing this for a long time to scale
performance

v

large amounts of memory, large power budgets

v

large problems

v

fixed computation and no external interaction

v

relatively few supercomputers worldwide
(less than a million)

Embedded computing

Robotics, consumer devices, medical systems, automotive, ...

» Robotics: vision, language, artificial intelligence
» Interaction: sensors, actuators and haptics

» Emulation (real-time supercomputing)

Embedded computing

Huge numbers of devices worldwide (billions)
Increasing demands on computational performance

But they are subject very different challenges:
» small physical form factor
» limited memory, limited power
» small problem sizes

» external input and output — real-time response to events

Increasing use of general purpose processors and high-level
languages

Scalable architecture for embedded systems

We want to build scalable distributed memory machines with
large numbers of processors for embedded systems

Why?

» because parallelism is the primary means of improving
computational performance

» and potentially an effective way to reduce power
consumption (P = fcV/?)

» because distributed memory is scalable
(bounded degree nodes, sparse interconnect)

» because a tiled architecture based on a replicated
processor-memory pair is simpler to design & verify

Example: XMOS XMP-64

» 16 quad-core general-purpose
chips

» hypercube interconnect

» 8 threads and 64KB RAM per
core

» 512 threads @ 50MHz
or 256 threads @ 100MHz
= 25.6 GIPS

» 4MB RAM

» 400MB/s bisection bandwidth
(in each direction)

» 120 x 120 mm

» 30W

Example: Swallow

112 cores
615 threads
2D mesh
interconnect
56 GIPS
7MB RAM
29W

v vy

v vy

Application requirements

Embedded computing:
» broad range of problems
» diverse program requirements

» systems composed of a number of components

High performance computing:
» narrow class of problems
» often single algorithms

» require particular forms of parallelism

General parallel programming

Want to employ a different styles of parallelism where
necessary and in combination

Small set of paradigms:

v

Parallel random access machines (PRAMs/BSP)

Process structures

v

Data flow structures

v

Task farms

v

Event handlers

v

Example: adaptive visual sampling system

Ethernet
Delegate

¥

Gaussian
Filter

Histogram
Calculation

Image Image
Input Handler

Integral
Image

Image
Differences
)

Image Image
Handler Output

Integral
Image

Integral
Image

Adaptive Sampling for Low Latency Vision Processing, David Gibson, Neill
Campbell, David Bull (University of Bristol), Henk Muller (XMOS Ltd.), 2012.

Example: adaptive visual sampling system

Fast response:

...4 frames in 0.16 seconds

Shared memory vs. message passing

Shared memory
+ provides a separation of data

» dominates architecture and programming in
commodity/consumer systems

- it doesn’t capture ‘flow of data’ or locality

Message passing

+ essential where there is a flow of data

+

simple compilation and efficient execution

v

the standard programming approach in HPC!

representation of data is fragmented

awkward when data access patterns are not known

The problem with message passing

A key problem with message passing is how to support
efficient abstractions of data

» no separation of data from a computation

» awkward for arbitrary access patterns

Data abstraction

A methodology of programming is also bound to include all
aspects of data structuring. Programs, after all, are concrete
formulations of abstract algorithms based on particular
representations and structures of data.

— Nikalus Wirth, 1978, Algorithms+data structures=programs

A fundamental principle in sequential programming
Separation of data structures from algorithms

» A data structure is a set of basic operations to efficiently
manipulate a chosen representation of the data

» An algorithm is a computational procedure

Composition of data structures

Algorithms are composed with data structures, typically in
sequence

Image i;
loadImage(i);
preProcess(i);
findEdges (i) ;
outputImage (i) ;

Distributed data structures

Data spread over many individual machines

An established concept in large-scale systems

Google

Google Search] [I'm Feeling Lucky]

» Internet services, e.g. web search
» Peer-to-peer networking, e.g. distributed hash tables

» Databases

Building distributed data structures

Data representation:
» must specify a distribution over a collection of memories

» requires a mapping of each data component to a
processor location and memory location

Basic operations:
» access mechanisms (insert, delete, update, iteration, ...)
» load distribution
» replication and combining

» caching

Proposal

To combine shared resources with message passing to support
data separation and abstraction

Based on a server component

A server is a compositional tool that

» allows the expression of a global shared state independent
of a computation

» gives rise to a subroutining mechanism

» can be compiled in a simple way

Servers

A special kind of process active only in response to clients

Provide a set of calls that behave in the same way as
conventional procedure calls, except the server executes the
call

Calls compiled into a sequence of message passing exchanges

Server

client;
ly . .

&
cal,

Server array

Distributed store

Server array: sequential access

Distributed store

Sequential computation

Server array: concurrent access

Distributed store

Parallel computation

Server array: distributed access

Distributed store

Parallel computation

Layered server arrays:
sequential access abstraction

Data structure

Sequential computation

Layered server arrays:
concurrent access abstraction

Data structure

Parallel computation

Layered server arrays:
sequential composition

Data structure

A different parallel computation

Implementation: avoiding deadlock

An important problem with limited buffering and memory
Many-to-one client-server relations can cause deadlock

If a client or set of clients attempt to access a busy server, the
request message will become blocked in the network

If the server then tries to engage in a communication, there may
be no available route in the network and it will become blocked

m Cay IIbusy busy busy
m
- ((\% p2 \00\(\

o o o — e&o—
— o @ o —0 «—O

Implementation: avoiding deadlock

If the number of clients can be determined at compile-time and
is small:

» provide sufficient buffering so that a server can record all
client requests and service them when it is able to

Otherwise:

» implement many-to-one connections with a
bounded-degree routing network

» server requests are taken off the network and queued in
memory

» this creates back-pressure, blocking clients but keeping the
network clear

Implementation: server routing network

Routing processes (non-deterministically) wait for messages on
a set of channels

Messages are routed towards their destination
Can be implemented as a compile-time program transformation

Routing processes can also perform call combining if possible

Example: ray tracer

Problem:
» large world model

» large number of independent tasks calculating ray
intersections with unpredictable run time and world model
access patterns

Example: ray tracer

Implementation:
» work distributed to a set of worker processes in a task farm

» world model stored in a distributed data structure
accessible by all workers

» world model summary structure and object caching
essential for good performance

Example: ray tracer

World model

000000000000000

QQQQOOOOQQQ

,,,,,,,,,,,,,,,,,,,,,,,,,

Farmer
Summary structure replicated among access servers

Access servers also implement caching

To summarise...

Parallellism essential to improve performance and reduce
power consumption

We want to employ distributed parallel architecture to scale
these

Exciting opportunities and challenges in embedded computing

But current message passing approaches don’t support data
abstraction

Proposal: we can combine message passing with the concept
of a shared resource (server) to separate data and develop
abstractions independently of a computation

Any questions?

Abstract machine model

N processing tiles, each with a processor, private memory and
communication interface

Each processor able to execute multiple processes
simultaneously, with mechanisms to create, synchronise and
destroy groups of threads

A process can communicate with any other process in the
system via a channel

Communication channels consist of two channel ends that are
local to a process

A channel end is connected (unidirectionally) by specifying the
unigque reference of the destination channel end

