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Abstract

It is now accepted that parallelism will be the primary means of increasing performance
of computer systems, but the preoccupation over the last 30 years with frequency scaling of
single-core systems has meant that relatively little work has taken place with regards to how
we should architect and program parallel computers. Currently, there is little consensus in
the approach taken with new designs, which has resulted in a growing gap between the design
of languages and architectures, and the algorithms written. This paper argues that to be
able to effectively use parallel systems, simple concurrency mechanisms must be provided
as features of a programming language, and that these must be supported by primitive
operations in the underlying architecture. In particular, the concepts of process migration
and parallel recursion allow the expression of simple but powerful concurrent programs.

1 Introduction

Concurrency in computer systems is the concept of multiple processes executing simultaneously
and interacting with each other. It has been an area of study active since the mid 1960s
and today we are familiar with it as a design approach for multi-processor systems, but it
was originally conceived as a key abstraction in the design of real-time systems, in particular
operating systems. Edsger Dijkstra’s 1965 paper Cooperating sequential processes [7] laid the
first foundations for abstract concurrent programming, followed closely by contributions in the
theory and implementation of concurrent programming principles, from Tony Hoare and Per
Brinch Hansen; for examples see [6, 10, 16].

Despite the establishment of such important principles so early on in the development of
computer systems and programming languages, and in particular Tony Hoare’s Communicating
sequential processes (CSP) [15], they have since largely been ignored. This can be attributed
to the advent of integrated circuit (IC) and very large scale integration (VLSI) techniques
which combined with huge consumer demand for ever more performance-intensive software has
resulted in processor design based on frequency scaling. That is, increasing the execution rate of
sequential code, which has been a pragmatic and straight-forward approach for the designers of
both hardware and software. The rate of this follows, or has been arguably dictated by Moore’s
law [26].

In the last few years however, frequency scaling has become increasingly difficult, and over
the 30 years of systems design driven by it, only relatively small academic and commercial groups
have been active in the areas of software concurrency and the design of parallel architectures.
It is now accepted though that parallelism will be the primary method of improving system
performance [1], but we don’t currently know how to effectively architect or program parallel
systems.

1.1 State of the art parallelism

Parallelism is now becoming pervasive in system design at many different levels and to varying
degrees. Current state of the art high performance computing (HPC) systems employ the order
of 105 processing cores and are central to the rapidly growing areas of computational science,
utility computing and the Internet. Parallelism has also penetrated consumer markets with
dual and quad core processors now the standard in desktop computers and laptops.
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In spite of this, parallelism is still deployed in specific areas addressing particular require-
ments, with little regard to a more general approach. This is evident in the wide variety of
recent CMP designs, e.g. [17, 18, 31] and HPC systems e.g. [5, 28]. The result of this is an
increasing gap between the architectures and programming languages, and the application users
writing the algorithms. For CMPs, the result is they are not easily amenable to general-purpose
computing and instead have to focus on specific applications predominantly in the embedded
space where parallelism is more explicit and hence easier to program. For HPC, the hierarchy
of parallelism is increasing with growing system sizes and numbers of cores integrated onto a
single chip.

These problems are highlighted by one of the key requirements of the International exas-
cale software project (IESP), recognising the current complexity of systems and their under-
utilisation, which is to develop a new model of computation to establish standard ways of
exploiting parallelism and system performance [8]. Emerging from this is a requirement to be
able to more generally exploit parallelism. This work outlines language-level features to allow
parallelism to be effectively exploited.

1.2 Universal parallel computers

The key idea behind the von Neumann architecture and reason for its success is that it pro-
vides an efficient abstraction from the implementation of different computer systems, enabling
programs to be expressed at a high level and to be transportable between different platforms.

This idea is expressed more formally as universality, a concept introduced by Alan Turing in
1937 [32], stating that a computer may be viewed both as a special purpose device for executing
a particular program, as well as a device capable of simulating all programs. It means that
special purpose machines have no significant advantage, since general-purpose machines can
perform the same functions almost as fast [34]. The consequence of building special-purpose
parallel computers is the programmer must program with explicit consideration for the spe-
cialised architecture [33]. It is therefore crucial that a universality concept is developed for
parallel computers so that concurrent programming languages hide irrelevant hardware detail
and expresses parallelism concisely [11].

The most important elements in concurrent programming are processes, a sequence of com-
putational steps, and communication, transfer of data between a set of simultaneously executing
processes [11]. It has been observed that the concept of a universal parallel computer, a device
enabling parallelism to be exploited effectively with high level programming languages, is es-
sential to the success of parallel systems [33], and that the realisation of this concept depends
on the provision of operations at the hardware level supporting these concurrency primitives.
This paper examines several mechanisms supporting concurrency and discusses how they are
implemented and used to express concurrent programs.

1.3 Support for concurrency

We are familiar in sequential computers with a hierarchy of dynamic resource allocation mech-
anisms, such as stack memory for procedure calls and garbage collection. Such issues are not
irrelevant to the programmer, but he or she may choose at what level they are dealt with,
through their choice of language and features within it, in order to represent their program
clearly. The situation should be no different for parallel computers, where the resource is not
just memory, but also processors.

The goal of continued increases in performance of hardware from parallelism now depends on
the effectiveness of the software to harness it within a system. Realistically, programmers must
be provided with language-level features aiding the problem of process-to-processor allocation.
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It is vital that such features are provided as elements of a language so that they can be properly
optimised by a compiler, which is not possible with library-based functionality, for example,
with the Message Passing Interface (MPI) library standard for HPC, which allows programs to
communicate between computers over a network.

This paper will show that the combination of the concepts of process migration and parallel
recursion can provide this necessary support, and that they can be efficiently implemented
with the support from the hardware, allowing the simple and elegant expression of concurrent
programs.

1.4 Related work

There has been little work in the area of parallel recursion, and particularly with regard to
implementations. Per Brinch Hansen founded many of the ideas with his work studying parallel
programming paradigms [12], and design of languages, notably SuperPascal [14], which featured
channel communication and parallel recursion [13], but its only implementation was interpreted.

More recently, the language occam-π [35], has been developed which has brought concepts
of process and data mobility from Milner’s π-calculus [25] to the occam language [19], which
itself is based on the principles of CSP. Occam-π allows dynamic process configuration with
parallel recursion, but its features are complex, making the possibility of an efficient and scalable
implementation difficult. Regardless though, it is currently only targeted at conventional CPUs,
which rules out efficient process creation and mobility. Other languages which include similar
features do exist, e.g. [2, 9, 29], but all are designed for existing architectures that do not
support concurrency properly.

Several languages aimed at HPC programming are under development, notably Cray’s
Chapel language [3] and IBM’s X10 language [4]. Both support the concepts of process mi-
gration and spawning of parallel activities as key ingredients in the design of concurrent pro-
grams. This is significant given the companies standing in the HPC markets, and validates
the approach described in this paper. Critically though, both are implemented on conventional
x86 architectures with communication provided by external library functionality, limiting their
efficiency.

Worth noting as well are recent developments with general-purpose languages for graph-
ics processing units (GPUs), such as CUDA [27] and OpenCL [30]. GPUs are inherently
data-parallel and heterogeneous architectures, which make it difficult for the languages to be
architecture-independent. They require unwieldy and complex library calls for initiation and
termination, and are really only applicable to problems that are amenable to data-parallelism.

1.5 Language features supporting concurrency

In this section, the language features for parallelism and process-level communication are first
introduced as they form the key components for the following explanations of process migration
and parallel recursion. Example code is included in the following sections, which is written
in a simple imperative language with keywords and syntax embodying these features. These
features will be described as the accompanying ideas are introduced.

1.5.1 Parallelism & channel communication

Communication is provided at a language-level by abstract channel entities, through which
values are transmitted. The idea of channel communication is already an established concept
in languages such as Erlang [9], Go [29] and occam [19], all of which borrow from the ideas of
CSP [15]. In the language used in the following examples, a channel is declared as an entity
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of type chan and two chanends of a channel are shared between processes. Input and output
operators ‘?’ and ‘!’ are used to send and receive values bidirectionally along a channel. An
input statement reads an incoming value from a chanend and assigns it to a variable. An
output operation reads a value from an expression and sends it on the channel referenced by
the chanend variable. For example:

proc init() is
var c: chan;

{ p1(c) | p2(c) }

proc p1(c: chanend) is
var x: integer;

{ x:=0 ; c!x ; c?x }

proc p2(c: chanend) is
var y: integer;

{ c?y ; c!y+1 }

An initialising process (left) executes procedures p1 and p2 in parallel, by use of parallel com-
position denoted by the ‘|’ separator, in contrast to ‘;’, the sequential separator. Procedure
p1 then sends the value 0 to p2, which increments it by one and sends it back. The parallel
composition is provided by threaded fork-join parallelism, where the running thread forks into
two or more distinct threads of execution. On completion, the forked thread rejoins the original
thread. Pictorially, we have the following communication structure:

init p1 p2
chanend

c

chanend

0

Channel output operations must be matched with a corresponding input operation, oth-
erwise a deadlock situation will occur. For greater flexibility, channels are first class entities
within the language, meaning that they can be passed as parameters, returned from a function
or assigned to another channel reference, a concept established in π-calculus [25].

1.5.2 Process migration

Process migration allows computations to travel between distinct physical processors during
execution. It is a mechanism by which computations on remote processors can be initiated
and terminated efficiently. In contrast to conventional static process-to-processor mappings, it
allows much greater flexibility and can be provided as a simple language feature with the on
statement [20], for example:

on p do process() s p
process

This statement causes the procedure process to be sent from the process running on processor
s to be executed remotely on processor p.

A migrated process could also take with it a chanend of and channel c, so that the con-
trolling process can then communicate with it. In the example below, after initiating process
on processor p, the sending process sends a value, which is received by the remote process.

var c: chan
{ on p do process(c)
; c ! value
}

s p

c

process,c

An extension of idea allows an entire chanend c to be transmitted and used remotely to
communicate between processes, a idea key to later constructions. For example:
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var c: chan
{ on p do process1(c)
; on q do process2(c)
}

s

p

q

c

proces
s1,c

process2,c

Here, process1 and process2 are executed in parallel on remote processors p and q, sharing
the channel c.

The implementation of the on keyword involves transmitting to the remote node, a closure
of the process, which is a complete description, including parameter values and communication
channels, allowing it to autonomously execute, communicate and transmit back any result
values. The movement of program and data is relatively straight forward, it must ensure correct
moving or copying semantics are observed [24], and that any updated variables are removed from
the cache. The protocol for communicating channels over channels is slightly more complex but
is discussed in detail in [23]. In practise, this functionality would be realised as a small run time
program executing on each processing core, able to transmit, receive, initiate and terminate
process closures.

A process migration mechanism allows two important actions. The first is that processes
can be moved to other processors in order to distribute computational load more evenly over a
system. Secondly, when data is physically distributed across memories, it allows the movement
of a process to operate on data in situ. As process closures will often be many orders of
magnitude smaller than the data on which they operate, migration will be more economical
than data movement. As the size of computer systems increases, process mobility will become
increasingly important as it optimises the use of the interconnect and processors, maximising
performance and minimising power [20].

1.5.3 Parallel recursion

Parallelism is a mechanism by which a computation is broken down in to a number of smaller
ones that are performed simultaneously [11]. This is matched with the concept of recursion,
where the solution to a problem depends on solutions to smaller instances of the same one,
known as a divide-and-conquer approach. A finite parallel recursive process in theory allows
the limitless generation of sub-computations and, when combined with a mechanism for process
migration, will enable programs to effortlessly scale to an arbitrary number of cores1.

To illustrate the idea of parallel recursion, consider the following procedure which creates a
set of processes organised in a pipeline communication structure:

proc pipe(i, len: val; left, right: chanend) is
var middle: chan
if i = len - 1 then node(i, len, left, right)
else { node(i, len, left, middle) | pipe(i + 1, len, middle, right) }

When the index i is less than the length len, execution of the par statement causes a node
procedure and recursive calls to pipe to be executed in parallel. When the index is equal to
the length a single node procedure is executed, and the recursion terminates. For example, if
the pipe procedure was called with a length of 4: pipe(0, 4, nil, nil), then pictorially, the

1However, the size of any system is limited and the recursion may grow beyond it, at which point threads
could be virtualised on the same core. Consequently, this could lead to reaching a core’s memory capacity, where
it may be necessary to terminate the program altogether.

5



process communication structure would have the following form, where the labelled edges show
the channel names from the perspective of node 1.

node 0 node 1 node 2 node 3
left right

This pipeline structure then allows values to be communicated sequentially among the nodes.
For example, the following node procedure receives a value from its left channel (unless it is
at index 0) with the channel input operator, and forwards it on through the right (unless it is
at index len), channel using the output operator, adding its own index to the result i in the
structure.

proc node(i, len: int; left, right: chanend) is
var received: int

{ received := 0
; if i > 0 then left ? received
; if i < len then right ! received + i
}

It is possible to express this kind of construction in existing languages that support process
creation and channel communication, such as Erlang [9] or Go [29], but their implementations
target conventional x86 processors so they can only achieve thread-level parallelism, that is,
time-multiplexed streams of sequential execution. It is possible with recent shared memory
multi-processors to achieve true parallelism, for instance, Erlang’s virtual machine supports
symmetric multiprocessing, but this approach only offers limited scalability.

1.5.4 Process structures

Although the pipeline structure given in the example is seemingly simple, it is in fact significant
and underpins a number of important parallel algorithms. Per Brinch Hansen’s work in studying
the parallel implementation of certain key algorithms in computational science, showed that
many of them share the same process structure [12]. In particular, the pipeline can be used to
implement algorithms solving systems of linear equations, primality testing, multiplication and
n-body simulation (amongst others). His key insight in these cases was that each algorithm
solves an instance of the all-pairs problem, where every possible subset containing two elements
is chosen from n elements, which is efficiently implementable with a pipeline. Similar fascinating
results were shown for trees, cubes and meshes. This work has recently been extended in [1].

1.6 Hardware support for concurrency

The language-level features described deal with primitive parallel operations, namely dynamic
process creation and communication. It is essential for an efficient implementation of these
features that direct support is provided by the hardware. In many parallel computer systems,
these operations are implemented in software and are consequently orders of magnitude slower
than primitive sequential operations such as memory accesses or sub-routine calls, for example
communication protocols in HPC systems are implemented to some extent in software. In such
systems it is difficult to provide these important mechanisms efficiently.

Equally, it is necessary that language features for concurrency are simple enough that they
are capable of an efficient and scalable implementation.
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2 Concurrent programming

When we have hardware to support both the concepts of parallel recursion and process mi-
gration, the result is both simple and powerful. HPC employs large-scale parallelism, but in
general, most systems lack proper support for concurrency, especially with the growing hier-
archy of parallelism, primarily at the multi-thread and multi-core levels. The result is that
communication is provided as library functionality, most commonly by MPI implementations.
MPI itself represents a limited state of the art, in which it is only economical to perform few,
large communications, and although the MPI-2 standard supports dynamic process creation, it
is not widely implemented or used. This approach forces an unintuitive mix of task and data
parallelism.

With the parallel recursive approach suggested in this paper, the style of programming em-
ployed changes from the conventional focus on data structures to the concurrent concept of
process structures [21], such as the pipeline structure shown previously. This allows a much
more intuitive expression of concurrent programs. A simple but powerful example which com-
bines process migration with parallel recursion to demonstrate this is the rapid distribution of
processes across a system.

2.1 Rapid process spawning

In any parallel computer, distribution of processes over the network of physical processors is
fundamental to the operation of the system. Using parallel recursion and dynamic movement
of processes, we can use concurrency itself to efficiently and rapidly distribute concurrent com-
putations across both space and time in a network.

Consider the following recursive procedure d to distribute the procedure node over n pro-
cessors, an example borrowed from [20]:

proc d(t, n: int) is
if n = 1 then node(t)
else { d(t, n/2) | on t + n/2 do d(t + n/2, n/2) }

It works by offloading a copy of itself to a remote processor each time it recurses. These
offloaded processes then, themselves, continue this behaviour. Each recursion sees a doubling
of the capacity to initiate computations, in the structure of a binary tree. When each instance
of d executes with n equal to 1, it executes the node procedure, halting the recursion. The
parameter t indicates the node identifier. For the execution of d(0, 8), which distributes node
over 8 processors, p0, p1, ..., p7, the behaviour is illustrated by the following table, showing at
each time step the state of each processor, given by the procedure it is executing.

Step p0 p1 p2 p3 p4 p5 p6 p7

0 d(0,8)
1 d(0,4) d(4,4)
2 d(0,2) d(2,2) d(4,2) d(6,2)
3 d(0,1) d(1,1) d(2,1) d(3,1) d(4,1) d(5,1) d(6,1) d(7,1)
4 node(0) node(1) node(2) node(3) node(4) node(5) node(6) node(7)

The time steps here are given by each recursive call, but to maximise the speed at which
computations can be distributed, the receiving node should immediately start executing the
incoming program so that a next recursive call and process movement can be performed as
quickly as possible. Intuitively, you could think of these processes as travelling like ‘viruses’
through the network. In general though, the time required to initiate a computation on a set of
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n processors is O(log n): an exponential growth rate that will populate even very large systems
quickly.

The procedure d is powerful as it allows the set of distributed processes to be connected in
a process structure that may be matched to that of the underlying network, or to any other of
arbitrary complexity.

2.2 A new approach?

It is striking from the rapid process spawning example how parallel recursion and process migra-
tion can be used to express such a mechanism so simply. Conventional parallel architectures and
languages provide only restricted means for process creation, influencing the way in which con-
current programs are written and consequently system performance leveraged. Providing such
fine control over the dynamic creation and termination of processes with the features described
allows much better control of this.

It is well known that there is a large gap between the peak performance of HPC systems and
the actual performance of today’s algorithms, this is attributable to the styles of programming
used. In particular, it is common for a data-parallel approach to be taken where a specific
process is executed concurrently on the same or different sets of data, such as in a ray tracer
where the colour of each pixel can be calculated independently using the world model. During
execution, all processes synchronise after each frame is rendered and it is likely that many of the
processes will become idle when the rays it is calculating make no further intersections. It must
then wait for the process calculating the most complex ray to complete. With an efficient means
of dynamic process creation, it would be easy to move away from this synchronous data-parallel
approach to better utilise the spare capacity in the system.

3 A real implementation

This paper suggests that we need language-level features supporting the expression of concur-
rent programs and that they must be supported properly by the hardware. The key features
introduced relate to the primitive parallel operations of process creation, mobility and com-
munication. The concepts of parallel recursion and process migration have been known for a
long time and exist in several implementations, but have not been realised in the context of a
sympathetic architecture.

As part of this work, we intend to realise these concepts by an implementation on a state
of the art parallel processor, and for this we have identified the XMOS XCore processor. This
architecture is general-purpose, scalable and has been designed from the ground up to support
concurrency [22]. In particular, it includes specific instructions for channel communication and
fork-join parallelism, allowing concurrent language features to be built directly on top of the
hardware. Its existence shows that it is possible to efficiently implement parallel recursion and
process migration mechanisms.

We have written a complete bespoke compiler as preliminary work towards this goal. It im-
plements as a basis, a small language (the one used in the examples in this paper), with features
sufficient to properly demonstrate the mechanisms, and is targeted at the XCore architecture.
To enable parallel recursion at a thread level, a special stack allocation scheme will be employed
to allow the formation of a tree-structured stack such as the one Per Brinch Hansen described
in [13]. The implementation of a process migration mechanism is more complex and is divided
into two components. The first of these is run-time functionality, which will be resident on
each core as a light-weight kernel. Each core’s kernel will be able to mediate the transmission,
delivery and execution of process closures between cores in the network. The second component
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is the translation by the compiler of the on statement into a sequence of instructions able to
interact with the kernel and instruct it to migrate a processes to a specified processor.

We intend the full implementation comprising the features in the language and accompanying
run-time to follow in due course2.

4 Conclusion

This paper has developed the concepts of process migration and parallel recursion as features of a
programming language and shown how they can can be used as key general-purpose constituents
in the design of concurrent programs. In particular, it has illustrated how parallel recursion can
be used to elegantly express process structures, and combined with process migration, can be
used to rapidly distribute a computation over a set of processors, an ability key in the utilisation
of systems employing large-scale parallelism.

Integral to the efficient implementation of these features is support for underlying primitive
parallel operations of process creation, mobility and communication in hardware. The XMOS
XCore architecture is proof of their existence, and an excellent platform on which they can
be demonstrated. Initial exploration of this approach has been promising and symbiotic. The
results of an implementation will illustrate the effective and efficient operation of these mech-
anisms, which will in terms of expressiveness and performance, be unmatched by any current
systems.
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