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Background

I Concurrency is not a new area: originally developed as a key
abstraction in the design of real-time systems

I Conventional thinking in academia and industry has largely ignored
the vast amount of work in this area.

I Caused largely by preoccupation with frequency scaling, (between
∼1970-2005).

I Parallelism will be the primary means of increasing computational
performance.

I But we don’t know how to effectively architect or program parallel
computers.

3



State of the art parallelism

I Parallelism now pervasive in systems design
I HPC systems becoming increasingly important in science and industry.
I Dual/quad core processors standard in desk and laptop computers.
I Embedded systems using network-on-chip designs.

I But: parallelism is still deployed in specific areas, addressing specific
requirements.

I Evident in wide the wide variety of designs, e.g. CMPs, GPUs, HPC
systems.

I Emerging gap between architectures and languages, and application
users.

I Very difficult for users to harness all available parallelism.
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General-purpose parallel computers

I Sequential case: von Neumann architecture provides an efficient
abstraction from the implementation of different computer systems.

I Hides irrelevant details from the programmer
I Makes possible standardised languages and transportable software

I Universality concept, introduced by Turing in 1937.
I Computer both special purpose device for executing a program, as well

as a device capable of simulating all programs.
I Special purpose machines have no significant advantage (Valiant 1990).

I A universal parallel computer would allow parallelism to be exploited
effectively with high level, transportable languages.
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Language features supporting concurrency

I Programming languages must support high-level concurrent
programming.

I Contribution of this work is to demonstrate the existence of simple
language features supporting this.

I Process-to-processor allocation is the key issue.
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Parallelism and channel communication

proc init() is
var c: chan;

{ p1(c) | p2(c) }

proc p1
(c: chanend) is

var x: integer;
{ x:=0 ; c!x ; c?x }

proc p2
(c: chanend) is

var y: integer;
{ c?y ; c!y+1 }

init p1 p2
chanend

c

chanend

01
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Process migration

I Offload a process:

on p do process() s p
process

I Offload a process with a channel:

var c: chan
{ on p do process(c)
; c ! value
}

s p

c

process,c

I Offload processes sharing a channel:

var c: chan
{ on p do process1(c)
; on q do process2(c)
}

s

p

q

c

proces
s1,c

process2,c
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Parallel recursion

I Parallel recursion is a natural tool for expressing concurrent program
structures.

I Recursion: solve a problem by solving smaller instances of the same
problem.

I Parallelism: break a large computation down into smaller parts.
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Creating a tree

proc tree(depth: int; top: chanend) is
var left, right: chan
if depth = 0 then leaf(top)
else { node(top, left, right) |
tree(depth-1, left) | tree(depth-1, right) }

tree(2, top):

node

node

leaf leaf

lef
t

node

leaf leaf

right
top
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Process structures

I A process structure is the communication topology of a set of
concurrent processes.

I Simple structures such as the tree underpin many important parallel
algorithms.

I e.g. sorting and FFT.

I Other common process structures include arrays, meshes and
hypercubes.

I Parallel recursion and process migration allow the style of
programming to shift from data structures to process structures.
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Example: rapid process spawning

I Combine parallel recursion and process migration to optimise the
distribution of processes over a system.

proc d(t, n: int) is
if n = 1 then node(t)
else { d(t, n/2) | on t + n/2 do d(t + n/2, n/2) }

I Given a set of networked processors p0, p1, p2, p3, d(0, 4) executes
in time and space:

Step p0 p1 p2 p3

0 d(0,4)
1 d(0,2) d(2,2)
2 d(0,1) d(1,1) d(2,1) d(3,1)
3 node(0) node(1) node(2) node(3)
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Hardware support for concurrency

I It is essential for an efficient implementation of these mechanisms
that the hardware directly supports them.

I Difficult in systems like MPI where communication predominantly
software based.

I Process and communication primitives must be provided at the
hardware level (in the instruction set).

I These primitives must complete in same magnitude of time as
equivalent sequential operations such as subroutine calls & memory
accesses.
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A real implementation

I XMOS XCore processor architecture: general-purpose, scalable and
provides low-level support for concurrency.

I Completed work:
I Written bespoke compiler implementing a small language as platform

for new features
I A simple implementation of on statement.

I Initial exploration of approach has been promising. Results will follow
in due course.

27



Conclusions

I The combination of parallel recursion and process migration allows
the elegant expression of powerful concurrent programs.

I Rapid process distribution is an important mechanism in large scale
systems & has a simple high level expression in this framework.

I The existence of the sympathetic XCore architecture proves
implementation of efficient mechanisms supporting concurrent
programming are feasible.

I The results will be very competitive when compared to leading
parallel architectures.
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Any questions?

Email: hanlon@cs.bris.ac.uk
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