Dynamic generation of parallel computations

James Hanlon, Simon J. Hollis
Many-core project

June 13, 2011

Elic University of
BRISTOL



Introduction
Background
State of the art parallelism
General-purpose parallel computers

Language features supporting concurrency
Parallelism and channel communication
Process migration
Parallel recursion

Concurrent programming
Process structures
Rapid process spawning
Hardware support

A real implementation

Conclusions



Background

» Concurrency is not a new area: originally developed as a key
abstraction in the design of real-time systems

» Conventional thinking in academia and industry has largely ignored
the vast amount of work in this area.

» Caused largely by preoccupation with frequency scaling, (between
~1970-2005).

» Parallelism will be the primary means of increasing computational
performance.

» But we don’t know how to effectively architect or program parallel
computers.



State of the art parallelism

» Parallelism now pervasive in systems design
» HPC systems becoming increasingly important in science and industry.
» Dual/quad core processors standard in desk and laptop computers.
» Embedded systems using network-on-chip designs.



State of the art parallelism

v

Parallelism now pervasive in systems design

» HPC systems becoming increasingly important in science and industry.
» Dual/quad core processors standard in desk and laptop computers.
» Embedded systems using network-on-chip designs.

But: parallelism is still deployed in specific areas, addressing specific
requirements.

Evident in wide the wide variety of designs, e.g. CMPs, GPUs, HPC
systems.

Emerging gap between architectures and languages, and application
users.

Very difficult for users to harness all available parallelism.



General-purpose parallel computers

> Sequential case: von Neumann architecture provides an efficient
abstraction from the implementation of different computer systems.
» Hides irrelevant details from the programmer
» Makes possible standardised languages and transportable software



General-purpose parallel computers

> Sequential case: von Neumann architecture provides an efficient
abstraction from the implementation of different computer systems.

» Hides irrelevant details from the programmer

» Makes possible standardised languages and transportable software
» Universality concept, introduced by Turing in 1937.

» Computer both special purpose device for executing a program, as well

as a device capable of simulating all programs.

> Special purpose machines have no significant advantage (Valiant 1990).

» A universal parallel computer would allow parallelism to be exploited
effectively with high level, transportable languages.



Language features supporting concurrency

» Programming languages must support high-level concurrent
programming.

» Contribution of this work is to demonstrate the existence of simple
language features supporting this.

» Process-to-processor allocation is the key issue.



Parallelism and channel communication

o ] proc pl proc p2
proc 1n?t(z |§ (c: chanend) is (c: chanend) is
; ;?203' fzgzlg) \ var x: integer; var y: integer;

{ x:=0 ; c!'x ; c?x } { c?y ; cly+1 }

chanend chanend




Parallelism and channel communication

proc init() is
var c: chan;

{ p1(c) | p2(c) }

proc pil
(c: chanend) is
var x: integer;

{ x:=0 ; c!'x ; c?x }

-

proc p2

(c: chanend) is
var y: integer;

{ c?y ; cly+1 }

-

1
@chanend

10

7 p2
chanend@



Parallelism and channel communication

proc init() is
var c: chan;

{ p1(c) | p2(c) }

proc pil
(c: chanend) is
var x: integer;

{ x:=0 ; c!'x ; c?x }

proc p2

(c: chanend) is
var y: integer;

{ c?y ; cly+1 }

S~

1
@chanend

11

p2
chanendO



Process migration

» Offload a process:

on p do process()

12



Process migration

» Offload a process:

on p do process() @- -------- 5 r-o-c-e-s-s@

» Offload a process with a channel:
var c: chan
{ on p do process(c)
; ¢ ! value

}

13



Process migration

» Offload a process:

on p do process() @- -------- 5 r-o-c-e-s-s@

» Offload a process with a channel:

var c: chan
{ on p do process(c)
; ¢ ! value

}

» Offload processes sharing a channel:

c
var c: chan proce?f‘}_’_ °
{ on p do processi(c) @ ————————

; on g do process2(c) N "TTt--l__

} Procesgy” 7 o

14




Parallel recursion

» Parallel recursion is a natural tool for expressing concurrent program
structures.

15



Parallel recursion

» Parallel recursion is a natural tool for expressing concurrent program
structures.

» Recursion: solve a problem by solving smaller instances of the same
problem.

» Parallelism: break a large computation down into smaller parts.

16



Creating a tree

proc tree(depth: int; top: chanend) is
var left, right: chan
if depth = 0 then leaf(top)
else { node(top, left, right) |
tree(depth-1, left) | tree(depth-1, right) }

17



Creating a tree

proc tree(depth: int; top: chanend) is

var left, right: chan
if depth = 0 then leaf(top)

else { node(top, left, right) |
tree(depth-1, left) | tree(depth-1, right) }

tree(2, top):

doy

node .

node node

/N /N

leaf 1leaf leaf 1leaf

18



Process structures

» A process structure is the communication topology of a set of
concurrent processes.

> Simple structures such as the tree underpin many important parallel
algorithms.

» e.g. sorting and FFT.

» Other common process structures include arrays, meshes and
hypercubes.

» Parallel recursion and process migration allow the style of
programming to shift from data structures to process structures.

10



Example: rapid process spawning

» Combine parallel recursion and process migration to optimise the
distribution of processes over a system.

proc d(t, n: int) is
if n = 1 then node(t)
else { d(t, n/2) | on t + n/2 do d(t + n/2, n/2) }

> Given a set of networked processors pg, p1, p2, p3, (0, 4) executes
in time and space:

Step |  po p1 p2 P3

20



Example: rapid process spawning

» Combine parallel recursion and process migration to optimise the
distribution of processes over a system.

proc d(t, n: int) is
if n = 1 then node(t)
else { d(t, n/2) | on t + n/2 do d(t + n/2, n/2) }

> Given a set of networked processors pg, p1, p2, p3, (0, 4) executes
in time and space:

Step Po p1 p2 P3
0 d(0,4)

21



Example: rapid process spawning

» Combine parallel recursion and process migration to optimise the
distribution of processes over a system.

proc d(t, n: int) is
if n = 1 then node(t)
else { d(t, n/2) | on t + n/2 do d(t + n/2, n/2) }

> Given a set of networked processors pg, p1, p2, p3, (0, 4) executes
in time and space:

Step Po p1 p2 p3
0 d(0,4)
1 d(0,2) d(2,2)

29



Example: rapid process spawning

» Combine parallel recursion and process migration to optimise the
distribution of processes over a system.

proc d(t, n: int) is
if n = 1 then node(t)
else { d(t, n/2) | on t + n/2 do d(t + n/2, n/2) }

> Given a set of networked processors pg, p1, p2, p3, (0, 4) executes
in time and space:

Step Po p1 p2 p3
0 d(0,4)
1 d(0,2) d(2,2)

2 d(0,1) d(1,1) d(2,1) d(3,1)

23



Example: rapid process spawning

» Combine parallel recursion and process migration to optimise the
distribution of processes over a system.

proc d(t, n: int) is
if n = 1 then node(t)
else { d(t, n/2) | on t + n/2 do d(t + n/2, n/2) }

> Given a set of networked processors pg, p1, p2, p3, (0, 4) executes
in time and space:

Step Po p1 p2 P3
0 d(0,4)
1 d(0,2) d(2,2)
2 d4(0,1) d(1,1) d(2,1) d(3,1)
3 node(0) mnode(1) node(2) mnode(3)

24



Hardware support for concurrency

> It is essential for an efficient implementation of these mechanisms
that the hardware directly supports them.

» Difficult in systems like MP| where communication predominantly
software based.

25



Hardware support for concurrency

> It is essential for an efficient implementation of these mechanisms
that the hardware directly supports them.

» Difficult in systems like MP| where communication predominantly
software based.

» Process and communication primitives must be provided at the
hardware level (in the instruction set).

» These primitives must complete in same magnitude of time as
equivalent sequential operations such as subroutine calls & memory
accesses.

26



A real implementation

» XMOS XCore processor architecture: general-purpose, scalable and
provides low-level support for concurrency.
» Completed work:
» Written bespoke compiler implementing a small language as platform
for new features
» A simple implementation of on statement.
» Initial exploration of approach has been promising. Results will follow
in due course.

27



Conclusions

» The combination of parallel recursion and process migration allows
the elegant expression of powerful concurrent programs.

» Rapid process distribution is an important mechanism in large scale
systems & has a simple high level expression in this framework.

» The existence of the sympathetic XCore architecture proves
implementation of efficient mechanisms supporting concurrent
programming are feasible.

» The results will be very competitive when compared to leading
parallel architectures.

28



Any questions?

Email: hanlon@cs.bris.ac.uk

20



	Outline
	Introduction
	Background
	State of the art parallelism
	General-purpose parallel computers

	Language features supporting concurrency
	Contribution
	Parallelism and channel communication
	Process migration
	Parallel recursion

	Concurrent programming
	Process structures
	Rapid process spawning
	Hardware support

	A real implementation
	Conclusions

